ROUGH ESTIMATE OF THE HEAT TRANSFER COEFFICIENT
IN LAMINAR AND IN TURBULENT FLOW THROUGH
FLAT CHANNELS

Yu. A. Gavrilov and G. N. Dul'nev UDC 536.242

Approximate formulas are proposed for estimating the coefficient of convective heat transfer
in laminar and in turbulent flow at the entrance to a flat channel.

We consider the convective heat transfer during the flow of fluid through the entrance segment of a
flat channel, where both the velocity profile and the temperature profile originate. We will make the fol-
lowing assumptions usually stipulated in such problems [1}: the flow and the heat transfer processes are
steady, the physical properties of the fluid are constant, the temperature and the velocity at the channel
entrance (x = 0) are uniform over the cross section, a constant thermal flux density is maintained at the
inside wall surface, energy losses and heat conduction in the axial direction are negligible.

A similar problem of laminar flow was solved by Siegel and Sparrow [2] and was considered in [1, 3].
An exact solution for the initial hydrodynamic and thermal stages of a channel was presented in a rather
unwieldy form very difficult to use in engineering practice. With an insignificantly larger error, however,
it is possible to derive sufficiently simple relations.

It has been shown in [1, 2] that at x = [ the Nusselt number is constant and equal to

Nty = -%:4,12, (1)

while at sufficiently short distances x the equation of local heat transfer for a stream along an immersed
plate

1
|
Nu — 0.46 ( hRe ) Pr3 (2)
x

is applicable. We will assume, furthermore, that Eq. (2) is valid for the entire initial stage. We con-
sider a fluid with the Prandtl number Pr = 1, where both the hydrodynamic and the thermal initial stages
are of equal length. That length is determined, according fo [1], from the equality

I; = ahRe. 3

Factor aq, is assumed constant. Its value depends on the conditions under which the edges of the boundary
layer and the coordinates of their termination in the channel are estimated. At x < lj, the velocity and the
temperature of the fluid in the outer edge region of the boundary layer approach asymptotically their main-
stream values as that edge moves closer to the axis. At x = I; the thickness of the boundary layer ap-
proaches 0.5 h, also asymptotically, with increasing x. For this reason, in rough calculations we allow
some leeway in defining a;. We will determine a4 from (2) and (3), letting x = 7; and Nu = 4.12:
2
a, = 0.0125Pr ® . 4

Then, taking into account (4), we insert into (2) the value of hRe from (3):
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Fig. 1. Heat transfer coefficient in laminar flow: solid lines represent
exact soluticn; dashed lines represent approximate solution.

Fig. 2. Comparison between approximate and experimental relations
€ = g(x) for turbulent flow: 1) upper dashed line accordin_g to [13] with
Req = 7.1-10% 2) [13], Req = 7.2-10% 3) [15]; 4) [11], K = 20%; 5)
[11], K = 0; 6) formula (15); 7) formula (16).
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TABPE 1. Values of Ij and n in (8) for Nu = 4.12 l_l) (5)
Laminar Flow X )
Pr 4 " The value of Nu at 0 < x < 1; will be determined from the
relation
X

0,6 >Pr 0,029 rL’hPe 0,5 _1— B __1___5‘ dy ®

0,6 LPr 10 0,0125Pr 3 i Re 0,5 Nu- x J Nu
5 0
Pr>10 0,0243Pr  ARe 0,4 and at x = [ according to the formula
Ny N+ (xx— AR 0

On the right-hand side of (7) Nuw = 4.12 and Nu, is taken from (6) at x = ;. We finally have

Nu = (_l.l..)n Num; Nu =(] +n) (L_)n Nue at x<li,
X X .

_ Is (8)
Nu = Nug; Nu=(1+n—1—>Num at x> ;.
X

Let us compare this answer with the exact solution. The relation Nu = f(x), which has been based in
[1] on the exact solution, is shown in Fig. 1 by solid lines. On the diagram is also shown a dashed line

representing Eq. (8) for Pr = 0.7. Evidently, the approximate solution (8) agrees fairly well with the exact
one.

For a Prandtl number very different from unity, it is suggested that the values of n and {; in Egs.
{8) be taken from Table 1. The dashed lines in Fig. 1, calculated for Pr = 0.01 and Pr = 50, are shown
here for comparison. The agreement is satisfactory. We note that in [4] are also given various formulas
for calculating the Nusselt number for a laminar flow along a plate, as a function of the limits of possible
Prandtl number values given in Table 1.

We will now proceed to analyze the heat transfer in a turbulent stream. In this case, a single for-
mula is given in [4] for a stream along a plate with any value of the Prandtl number. The heat transfer in
the stabilized channel segment, however, depends on the Prandtl number. We will analyze the heat trans-
fer for the case of a liquid and gases only. For the segment of stable heat transfer we use the formula in

[5]:

ad

Ny, == = 0.022 Reg *Pr>*. ©

do
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Formula (9) has been obtained for channels with circular sections, but is applicable also to flat and
rectangular channels {6-8]. For a flat channel one may, therefore, use the results of heat transfer studies
made on a cylindrical tube. It is also obvious that the heat transfer in a turbulent stream depends very
little on the boundary conditions at the wall surfaces [8-10]. In the channel entrance segment, however,
the heat transfer depends additionally on the initial stream turbulization and on the shape of the entrance
edge [11-14].

Most studies concerning the heat transfer in tubes (for example, [12, 13]) were made with a stable
velocity profile at the entrance to the heated segment. In [13] the heat transfer in a cylindrical tube was
studied so as to take into account the longitudinal flow of heat along the walls and through the liquid. It
has been shown there that the segment of thermal stabilization is not over 30 diameters long and may,
within 5% accuracy, be confined to a distance up to 16 diameters long. The values obtained for ¢, i.e.,
the ratio Nug/Nug,, of the local Nusselt number to the Nusselt number at infinity are shown in Fig. 2 by
dashed lines for Pr = 0.8, Curve 1 corresponds to Req = 7.1 103 and curve 2 corresponds to Req = 7.2
*10%. The curves corresponding to intermediate values of Req will lie between these two. Within the same
range we find the curves for Pr = 0.71 and Req = 3- 10%-5+10* [12] corresponding to heat transfer with a
constant thermal flux at the walls. It has been asserted in [15] that the heat transfer process stabilizes
over a distance !; = 16.5d, and values for € have been obtained there which are shown in Fig. 2 by the solid
line 3. This line splits at x < 1.5d into a family of curves representing different values of the Reynolds
number. The upper branch corresponds to Req = 5 10%, the lower branch corresponds to Re = 105, Curve
3 with an upper branch approximately fits the equation

e = 1.38 (-’;—)_0'12 (10)

proposed in [5].
The effect of initial stream turbulization was studied in [11], where the following relations were sug-
gested:

1
e=A(—x—) L= dA™, (11)

with A = 1.35 + 0.04K, m = 0.17 + 0.006K, and K = Au/u (%).

The dashed-dotted curves 4 (for K= 20%) and 5 (for K= 0) in Fig. 2 have been plotted according to
Eq. (11). The initial stream turbulization, estimated in terms of the Karman number K (mean-over-the-
section ratio of the mean-squared pulsations of axial velocity Au to the mean stream velocity u), is usually
not known in the solution of application problems.

1t follows from Fig. 2 that the various & = £(x/d; Re) curves obtained by different authors do similarly
reflect the trend of the relation between & and Re. In many cases the € = e(Re) curves cannot be compared,
inasmuch as they have been obtained for different test conditions (shape of the inlet edge, initial turbuliza-
tion, ete.). Besides, there are not sufficient test data available for making correct generalizations. We
analyze the relation € = f(x/d) in the first approximation only, therefore, and average out the effect of other
parameters.

We assume that the heat transfer coefficients for the channel entrance segment can be estimated ac-
cording to the formula analogous to that for a turbulent stream along a flat plate [4]:

Nu, = g, Re}® . (12)

Multiplying both sides of this equality by d/x, we have
0,
Nu, = a, <i> ? Red® . (13)
x

The constant coefficient a, will be determined from the condition that at x = /j = 16d the right-hand sides
of (9) and (13) become identical:

a, = 0,038Pr"%, (14)
Dividiag (13) by (9), with (14) taken into account, we have for x = 16d

—0.2
— L7l X} 15
e ( d) (15)
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Equation (15) is represented by curve 6 in Fig. 2. We will use the average value of the power exponent in
(10) and (15), making it equal to —1/6, and will write

' 1

o 1.65(—1)'@“ at 1< 204, (16)

X
The factor 1.65 in (16) has been obtained from the condition € = 1 at x = 20d. Curve 7 has been plotted ac-
cording to (16) and is a more convenient average for the values obtained in these studies of heat transfer in
channels.

In order to determine the mean value of ﬂd, we will use relations of the (6) and (7) kind. Then, after
necessary calculations and transformations, we arrive at formula (8). For a turbulent stream, however,
the governing dimension in (8) is the equivalent diameter, with /; = 20d and n = 1/6. The approximate for-
mulas (8) are relatively simple and may be recommended for practical calculations.

NOTATION

is the longitudinal coordinate;

is the length of the initial segment;

is the coefficient of convective heat transfer;
is the thermal conductivity of the fluid;
is the distance between the channel walls;
is the equivalent hydraulic diameter;

u  is the Nusselt number;

e is the Reynolds number;

Pe is the Peclet number;

Pr  is the Prandtl number;

K is the Karman number;

£ = Nu/Nu,,.

=~ P
™

WA >R

Subscripts

o0 denotes beyond initial segment;
d,x  denote governing dimensions;
bar above a symbol denotes the average value.
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